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The boundary-integral method is used to calculate the hydrodynamic force and 
torque on an arbitrary body of revolution whose axis of symmetry is oriented at an 
arbitrary angle relative to a planar wall in the zero-Reynolds-number limit. The 
singular solution of the Stokes equations in the presence of a planar wall is used to 
formulate the integral equations, which are then reduced to a system of linear 
algebraic equations by satisfying the no-slip boundary conditions on the body 
surface using the boundary collocation method or weighted residual technique. 

Numerical tests for the special case of a sphere moving parallel or perpendicular 
to a planar wall show that the present theory is accurate to at least three significant 
figures when compared with the exact solutions for gap widths as small as only one- 
tenth of the particle radius. Higher accuracy can be achieved and solutions can be 
obtained for smaller gap widths at the expense of more computation time and larger 
storage requirements. 

The hydrodynamic force and torque on a spheroid with varying aspect ratio and 
orientation angle relative to the planar wallare obtained. The theory is also applied 
to study the motion of a toroidal particle or biconcave shaped disc adjacent to a 
planar wall. The coincidence of the drag and torque of a biconcave-shaped body and 
a torus having an aspect ratio bla = 2 with the same surface area shows that in this 
case the hole of a torus has little influence on the flow field. On the other hand, for 
an aspect ratio b/a = 10, the effect of the hole is significant. It is also shown that 
when the body is not very close to the wall, an oblate spheroid can be used as a good 
approximation of a biconcave-shaped disc. 

1. Introduction 
The motion of an arbitrarily shaped rigid body in Stokes flow adjacent to a 

confining boundary has important biological and engineering applications. The 
theory may be used to model the flow of red blood cells in an artery or vein, see Wang 
& Skalak (1969), Chen & Skalak (1970), Leichtberg, Weinbaum & Pfeffer (1976). 
Specifically, the theory may explain the enhancement in the flux of oxygen and blood 
platelets near the artery wall resulting from the tumbling motion of the red blood 
cells, see Lightfoot (1974, p. 314). Other biological applications include the transport 
of non-spherical macromolecules or solute particles in intercellular clefts or through 
porous membranes. In particular, Brenner & Gaydos (1977) have shown how the 
hydrodynamic resistance coefficients describing the motion of non-spherical particles 
in the proximity of boundaries can be used in the study of diffusive and convective 
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transport of non-spherical solute particles. Other engineering applications include 
determination of the motion of a particle passing through an electrostatic 
precipitator or the trajectory of a contaminant particle in a lubricating bearing or in 
the laminar sublayer in the vicinity of a turbine blade. 

A review of the low-Reynolds-number flow literature for the motion of a non- 
spherical particle in the presence of confining boundaries shows that, to date, five 
different methods of solution have been used to solve such problems. They are the 
method of reflections, the boundary collocation truncated series solution technique 
(multipole technique), the finite-element method, the singularity method and the 
boundary-integral method. 

The method of reflections has been used extensively to study particle-particle and 
particleboundary hydrodynamic interactions at low Reynolds number. This 
iterative solution technique, which in the present application alternately satisfies the 
no-slip boundary conditions on the particle surface and on the confining boundary, 
gives accurate results using one or two reflected fields only if the particle is far 
removed from the boundary. Using this approach, Wakiya (1959) treated the 
problem of the motion of a spheroidal particle parallel to a plane wall with the semi- 
major axis oriented at  an arbitrary angle relative to the wall. This approximate 
solution will be used as a check of the more exact theory to be developed in the 
present paper, for the special case where the particle is a spheroid, in the limit as the 
spacing between the particle and the wall becomes large. 

The boundary collocation, truncated series solution technique has been used to 
treat a wide variety of bounded and unbounded multiparticle Stokes flow problems. 
In connection with bounded flows involving non-spherical particles, the technique 
was used by Chen & Skalak (1970) to treat the problem of axisymmetric flow past a 
periodic array of spheroidal particles located at  the centreline of an infinitely long 
circular cylinder. More recently, Kucaba-Pietal (1986) has used this technique to 
treat a torus in the vicinity of a planar wall for the special orientation where the axis 
of symmetry lies perpendicular to the wall. The method is capable of producing 
highly accurate results since each particle and boundary is represented by an infinite 
series or integral of all the simply separable solutions in the appropriate coordinate 
system, and the no-slip boundary conditions on all the surfaces are satisfied 
simultaneously rather than in an iterative fashion. However, in the present 
application involving a non-spherical particle inclined at an arbitrary angle relative 
to a planar wall, the coordinate transformation between the particle and boundary 
coordinate systems is complicated by the fact that the orientation angle of the 
particle enters as a parameter. This in turn complicates the inversion integrals which 
must be performed along the planar surface and requires that they be performed 
numerically which is exceedingly time consuming. 

The finite-element method was used by Skalak, Chen & Chien (1972) in treating the 
problem of capillary blood flow consisting of biconcave disc-shaped solid particles 
periodically distributed along the axis of circular cylinder. The method permits one 
to treat body shapes that do no conform to a natural orthogonal coordinate system. 
However, it is computationally inefficient to use this method in Stokes flow problems 
where the fluid domain is not periodic and is of infinite extent as in the present case, 
since a large number of nodal points would be needed to describe the three- 
dimensional flow domain in which the slowly decaying particle disturbances are felt. 

The singularity method is based on the principle of placing an appropriate set of 
singularities in the interior of each body in the flow field and satisfying the no-slip 
boundary conditions on the surface of each body, at least approximately. The 
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method has been used to treat slender bodies in the presence of confining boundaries, 
see Liron & Mochon (1976), Liron (1978). More recently, Dabros (1985) applied this 
method to calculate the angular velocity of a prolate spheroid adjacent to a planar 
wall and Yuan & Wu (1987) have used i t  to treat an arbitrary prolate body of 
revolution translating axisymmetrically towards a planar wall. 

Odqvist (1930) developed a general solution of the Stokes equations, which allows 
the flow field to be expressed in terms of an integral over the boundary area of a 
Green function, which is the fundamental solution of the Stokes equations for a point 
force (stokeslet) multiplied by an unknown density function in each direction which 
represents the stress on the boundary surface. The density functions are determined 
by solving the integral equations that are obtained when the no-slip boundary 
conditions are applied on the boundary. 

Youngren & Acrivos (1975) were the first investigators to use Odqvist’s solution to 
calculate the creeping motion of an unbounded fluid past an arbitrary isolated three- 
dimensional body. The flow disturbance produced by the body was formulated as a 
system of linear integral equations for a distribution of stokeslets over the particle 
surface. The body surface was divided into a finite number of discrete elements in 
each of which the stokeslet strength was assumed to be constant, and the no-slip 
boundary conditions were applied at  the centre of each element using a boundary 
collocation technique. Thus the integral equations were reduced to a system of linear 
algebraic equations for the unknown stokeslet densities. Later, Lewellen (1982) used 
a variation of this method to obtain a solution for the creeping motion of a spherical 
particle in an infinitely long cylindrical tube. The densities of the stokeslets were 
represented by a double infinite series, in contrast to discretizing the density 
functions as was done by Youngren & Acrivos (1975). The no-slip boundary 
conditions on the particle and boundary surfaces were satisfied by a weighted 
residual method in which the coefficients of the series representation were determined 
by requiring orthogonality of the residual vector to a set of trial functions. This 
approach of expressing the unknown surface stresses in terms of an infinite series 
eliminates the discretization error incurred if the integral equations were to be solved 
numerically by discretizing the force distribution to patches and will be used in the 
present study. More recently, Tozeren (1984) used the boundary integral technique 
to treat the problem of axisymmetric creeping flow past a collection of spheroids a t  
the centreline of an infinitely long circular cylinder. A singularity solution in the 
presence of an infinitely long cylindrical surface for axisymmetric configurations was 
obtained and applied to formulate the integral equations. Thus the integrals along 
the infinite cylindrical surface vanish. The integral equations were solved numerically 
by discretizing the force distribution and using boundary collocation on the surface 
of the particles as was done by Youngren & Acrivos (1975). The advantage of 
utilizing a kernel function which identically satisfies the no-slip boundary conditions 
along the infinite boundary a priori is that i t  eliminates the need to perform time- 
consuming numerical integration along the boundary. This feature will be employed 
in the present work. From the above discussion, it appears that the boundary- 
integral technique is the best suited method for treating the present problem in terms 
of accuracy, ease of application and computational effort. 

This paper is presented in six sections. In $2 the boundary-integral technique is 
used to formulate the problem for the hydrodynamic interaction of an arbitrarily 
shaped rigid body near a planar wall at low Reynolds number. This general solution 
is specialized to treat the very important case of an arbitrary body of revolution 
inclined at  an arbitrary angle near a planar wall. In $3, the first highly accurate 
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FIQURE 1. Motion of an arbitrarily shaped body in shear flow adjacent to a planar wall. 

solutions for the force and torque on an oblate or prolate spheroidal particle near a 
planar wall are presented. In $4 the theory developed in $2 for treating an arbitrary 
body of revolution is modified to handle body shapes whose surface is a multivalued 
function of the axial coordinate and the first solutions for the force and torque on an 
arbitrarily inclined torus near a planar boundary are presented. In $5 the theory is 
applied to obtain the first solutions for a biconcave-shaped disc (shape of an 
undeformed red blood cell) next to a plane wall. Finally, $6 contains some concluding 
remarks about the applicability of the method in future research. 

2. Formulation 
The creeping motion of an arbitrary particle in an incompressible viscous fluid near 

an infinite planar wall is illustrated in figure 1.  The particle has a translational 
velocity U, and is rotating with an angular velocity w .  U,  represents an undisturbed 
simple shear flow. 

Let Vl represent the flow field and define V = Vl - U,. The governing equations 
for V are 

pV2 V = V p ,  Q V = 0, (2.la, b)  

subject to the following boundary conditions : 
at  the particle surface v =  Up= U , + o x p - U , ,  (2.2) 

at the wall v= 0, (2.3) 

at infinity v= 0, p = 0, (2.4) 

where p is the position vector whose origin is at the particle centre. In omitting the 
unsteady term from ( 2 . 1 ~ )  we have assumed that the particle is translating and 
rotating slowly enough such that the timescale to establish equilibrium in the fluid 
is much smaller than the time required for the particle surface to move a significant 
distance. 

The boundary-value problem posed by (2.1)-(2.4) will be solved using the 
boundary-integral technique. We now outline the solution procedure. 

As mentioned in the introduction, to avoid numerical integration over the infinite 
domain of the planar boundary, the singular solution for Stokes flow due to a point 
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FIGURE 2.  The flow field produced by a stokeslet in the vicinity of a planar wall. 

force located near a stationary planar wall is used. Consider a semi-infinite fluid 
domain bounded by a planar wall as shown in figure 2. Let a unit singular force 
(stokeslet) pointing in the j t h  direction be located a t  a position (yl, yz, y3). 
The velocity components and the associated pressure field at  an arbitrary point 
(xl, x2, xa) due to this stokeslet are given by Blake (1971) as 

1 1 1  r i r ,  r: r; 
Snp r r* r3 r*3 

ui, (x, y) = -{ (---) s.. + -- - 

where 
r =  [ ("1- -1 )~+  (x2 -y2)2+  ( ~ a - ~ a ) 2 1 ' )  

r *=  [(x~-y$+ (x~-y2)'+ (x ,+! / , )2] t ;  

i, j, I = 1,  2, 3 ;  01 = 1, 2, and the usual summation convention is used. The term 
S,, S,, - S,, ~9,~ is not zero only when j = 1, and has the value + 1 for j = 1 or 2 and the 
value - 1 for j = 3. The terms in (2.5) which involve r* account for the disturbance 
of the wall in the flow field. 

Using the notation of Youngren & Acrivos (1975), the Green's formula which may 
be applied to the Stokes problem is given by Ladyzhenskaya (1963, p. 53) as 

The above formula is a general vector identity, where u and v are arbitrary smooth 
solenoidal vectors, p and q are arbitrary smooth scalar quantities, SZ represents a 
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bounded domain with boundary S ,  n is the outward pointing (with respect to 52) 
normal on S and 

Here Ti[v3 represents the local stress tensor corresponding to a flow field ( u ,  p ) ,  and 
y is the dynamic viscosity. 

Replacing (u, q )  in (2.6) with the singular solution (u i j (x ,  y ) ,  p ( x ,  y ) )  given by (2.5), 
and identifying ( u ,  p )  with the solution of the boundary-value problem posed by 
(2.1)-(2.4), we get 

'ify) = I!,, - T&[uifx,  Y ) l  z Ik (x )  n j ( x f  + T k j [ u ( x f l  n j ( x )  uk i fx ,  y ) >  dS, (2.81 

Here ui(x ,  y) represents the velocity field due to a stokeslet pointing in the ith 
direction, dSx indicates that the integration is performed with respect to the variable 
x, S, represents the surface of the particle, and n is the inward normal to the object. 
The corresponding pressure is obtained from (2.1) using (2.8). The solution can be 
written as 

where 
" "  
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The quantities (vp), p")) and (.I"), P ' ~ ) )  have traditionally been called single- and 
double-layer potentials having densities fk and vk respectively. The quantity fk = 
Tkj  nj is the density of the stokeslets, identical to the local surface stress force in the 
kth direction. 

The solution for v6 and p ,  given by (2.9), satisfies the governing equations (2.1), the 
no-slip boundary conditions on the infinite wall and tends zero at infinity. Therefore 
it only remains to satisfy the no-slip boundary conditions on the surface of the 
particle. 

In the above formulae it has been assumed that the particle boundary S, is a 
Lyapunov surface, i.e. that the surface has a well-defined tangent plane at  every 
point. Under this assumption, the single-layer potential "I1) is continuous in the fluid 
domain 52 and a t  the particle surface Sp. However, it is well known that the double- 
layer potential vf!) undergoes a discontinuity at s, given by 

limwt2)(y) = ~ ~ ~ ) ' ( y ~ ) + ~ ~ ( y ~ ) ,  ~ € 5 2 ,  y o ~ S p .  (2.14) 

Therefore using (2.14) and applying the no-slip boundary conditions on the surface 
of the particle leads to the following linear integral equations to be solved for the 
unknown density functions fk : 

Y-tYO 

(2.15) 

The solution of the velocity and pressure fields (2.9) with the density distribution 
given by (2.15) is valid for any steady motion of a particle of arbitrary shape 
adjacent to a planar wall at  low Reynolds number. The system of integral equations 
(2.15) can only be solved numerically. This requires discretization of the unknown 
density functions and double numerical integration over the surface of the particle. 
An important special case of problems may be solved much more accurately and 
efficiently by considering only bodies of revolution with the motion having planar 
symmetry. 

In this special case a cylindrical coordinate system (R, 8, Z )  is used, as shown in 
figure 3. The Z-axis lies along the particle axis of symmetry and the radius of the 
body surface, R, can be represented by a single-valued function 

R = R,(Z). (2.16) 

The transformation of coordinates (R, 8, 2 )  to ( x ~ ,  x2, x3) is given by 

(2.17) I x1 = Zcosa-RsinacosB, 

x2 = - R sin 8, 

x3 = Zcosu+RcosacosO+H, 
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FIGURE 3. The planar motion of a body of revolution in shear flow near a planar wall. 

where a is the orientation angle of the body and H is the perpendicular distance from 
the centre of the body to the wall as shown in figure 3. Using (2.16) and (2.17) and 
denoting the coordinates of the points x and y by (R,(Z),  8 , Z )  and (R,(Z*), B*, Z*) 
in the cylindrical coordinate system respectively, all variables in (2.15) can be 
expressed as functions of 8, 8*, Z and Z * .  The unknown density functions for the 
motion having planar symmetry can be represented by the Fourier-Legendre series 

I (2.18) 

where P,, is the Legendre function of order n, and A k , m , n  are coefficients to be 
determined. 

To solve the integral equation (2.15) we define a residual vector wp(y) as follows: 

V 3 Y )  = v,(Y)-vi*(Y),  (2.19) 

where v,(y) represents the true solution and $ ( y )  is the right-hand side of the integral 
equation (2.15). If the stokeslet density function f , ( x )  in (2.15) is exact, the residual 
vector $ ( y )  will be identically zero. To find an approximate solution offk(x) we shall 
use two different methods. 

( a )  The boundary-collocation method: In this method we let the residual vector 
vF( y )  vanish a t  discrete points on the surface of the body. Substituting the series 
representations for fk into (2.15), truncating the series for f k  after M terms in m and 
N terms in n and choosing M x N collocation points on the surface of the particle on 
which the no-slip boundary conditions are satisfied, leads to 3 x M x N linear algebraic 
equations for the 3 x M  x N unknown A,,., m, I( coefficients. The integrals in (2.15) are 
performed analytically in the &direction and numerically in the Z-direction. The 
evaluation of the integrals in the 8-direction is outlined in Appendix A. A copy of the 
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final expressions of the double integrals in (2.15) in terms of integrations only in 
the Z-direction may be obtained from the authors on request. 

(b )  Weighted residual method: In this method we multiply the residual vector 
by trial functions c(8*, Z * ) ,  which are equal to cosm8*Pn(Z*/a) for i = 1 or 3 and 
sinm8*Pn(Z*/a) for i = 2, and let the weighted residual vanish, i.e. 

Takingn=O, 1 , 2 ,  ..., N - l , m = 0 ,  1 , 2 ,  ..., M - l f o r i = l a n d 3 a n d m = 1 , 2 ,  
3, . . . , M for i = 2, we also get 3 x M x N linear algebraic equations for the 3 x M x N 
unknown coefficients A k , m , n .  The integration in the 8- and Z-directions for 
calculating w: is performed in the same way as in the boundary-collocation method, 
while the outer integration in the 8*- and Z*-directions is performed using a 
composite 8-point Gaussian-Legendre quadrature formula. 

After the Ak,  m, , coefficients are obtained by either method, the total force and 
torque acting on the particle may be computed from 

(k = 1 and3), (2.21) 
n-0 

(2.22) 

The accuracy and convergence characteristics of the two methods is explored in 
Appendix B where detailed comparison is made with exact solutions for the 
hydrodynamic force and torque on a spherical particle near a planar wall. 

3. Solutions for the motion of a spheroid near a planar wall 
In  this section the theory derived in $2 is used to obtain solutions for the motion 

of a spheroid near a planar wall. The surface of the body is represented in the 
cylindrical coordinate system (see figure 3) by 

R,(Z) = b[l-(:y]:, 

where the spheroid is oblate for a < b and prolate for a > b.  
Let a spheroid translate with velocity components U, and U3 in the directions 

parallel and perpendicular to the wall respectively, and rotate with angular velocity 
w about the axis x2. The undisturbed shear flow has a gradient S. The force and 
torque on the spheroid may be related to the particle velocity and shear strength 
using twelve dimensionless resistance coefficients as follows : 

") (;). (3.2) 
F? Ftp F; 

$bpi $b!Et,a $bbT, @'Tf 
F$ F? Fj 
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N 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 

2 
4 
6 
8 

10 
12 
14 
16 
18 

2 
4 
6 
8 

10 

2 
4 
6 
8 

F2lF2 m 

8.9 
23.7 
40.3 
53.1 
57.5 
60.4 
61.4 
61.7 
62.6 
62.9 
62.9 

5.326 
6.918 
7.226 
7.257 
7.263 
7.264 
7.262 
7.262 
7.262 

3.407 
3.567 
3.589 
3.589 
3.589 

2.393 
2.379 
2.285 
2.385 

F P ? .  w 

4.732 
3.218 
3.355 
3.374 
3.378 
3.381 
3.384 
3.386 
3.388 
3.389 
3.389 
3.390 
3.390 

1.850 
1.917 
1.923 
1.923 
1.923 

1 A60 
1.564 
1.568 
1.568 
1.568 

1.267 
1.376 
1.380 
1.380 

H / b  = 0.55 
-0.168 

0.475 
0.580 
0.588 
0.576 
0.567 
0.561 
0.557 
0.556 
0.555 
0.555 
0.555 

H l b  = 0.8 
0.0134 
0.1233 
0.1217 
0.1211 
0.1211 
0.1211 

H / b  = 1.1 
0.01057 
0.0591 3 
0.05921 
0.059 16 
0.05916 

H l b  = 1.5 
0.00647 
0.03243 
0.03251 
0.03251 

12.05 
4.47 
5.19 
4.90 
4.80 
5.12 
4.90 
4.80 
4.91 
5.03 
5.04 
5.03 
4.97 

1.421 
1.991 
1.985 
1.994 
1.990 
1.984 
1.988 
1.990 
1.992 
1.990 
1.988 
1.988 
1.988 

0.843 1.516 
1.670 1.664 
1.656 1.671 
1.655 1.670 
1.654 1.670 
1.654 

0.672 1.354 
1.242 1.478 
1.245 1.481 
1.245 1.480 
1.245 1.480 

0.625 1.230 
1.100 1.342 
1.102 1.346 
1.102 1.346 

T W L  

-1.23 
1.36 
1.32 
1.43 
1.31 
1.28 
1.34 
1.41 
1.43 
1.37 
1.36 
1.35 
1.35 

0.780 
1.363 
1.370 
1.369 
1.369 
1.369 

0.915 
1.354 
1.362 
1.361 
1.361 

0.955 
1.324 
1.331 
1.331 

TABLE 1. Convergence of the resistance coefficients for an oblate spheroid having aspect ratio 
a/b = 0.5 with its symmetry axis oriented perpendicular to the wall 

Here c = b for an oblate spheroid and c = a for a prolate spheroid, H is the distance 
between the centre of the spheroid and the wall, Fl and F3 are the force components 
in the x1 and x3 directions respectively and T, is the torque acting on the spheroid. 

All the dimensionless resistance coefficients are functions of the separation 
distance of the spheroid from the wall, the orientation angle of the spheroid relative 
to the wall and the aspect ratio of the spheroid. The separation will be expressed by 
the dimensionless parameter H / c .  The aspect ratio 6 is defined as a /b  for an oblate 
spheroid and bla for a prolate spheroid, so that it varies between zero and unity in 
both cases. 

It is worth noting that only nine of the twelve resistance coefficients are 
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a/b = 0.1 alb = 0.5 

M... 4 6 8 10 4 6 8 10 

4 2.50 2.53 2.55 2.57 4.80 5.02 5.21 5.21 
6 2.51 2.59 2.61 2.61 4.96 5.08 5.16 5.16 
8 2.53 2.71 2.72 2.72 5.03 5.15 5.20 5.20 

10 2.54 2.71 2.72 2.72 5.04 5.15 5.20 5.20 

N (a) H l c =  1.1 

H / c  = 1.5 
4 1.741 1.741 1.742 2.363 2.364 2:365 
6 1.833 1.837 1.838 2.368 2.370 2.370 
8 1.834 1.840 1.840 2.369 2.370 2.370 

10 1.835 1.840 1.840 

(b )  H / c =  1.1 
4 1.314 1.320 1.328 1.330 1.294 1.303 1.324 1.322 
6 1.317 1.324 1.330 1.331 1.296 1.307 1.310 1.310 
8 1.318 1.338 1.339 1.339 1.297 1.309 1.313 1.313 

10 1.321 1.338 1.339 1.339 1.298 1.309 1.313 1.313 

H l c  = 1.5 
4 1.081 1.081 1.081 1.070 1.070 1.07 1 
6 1.087 1.087 1.087 1.071 1.071 1.071 
8 1.087 1.087 1.087 1.071 1.07 1 1.071 

(e)  H l c  = 1.1 
4 -0.187 -0.189 -0.192 -0.192 -0.193 -0.198 -0.202 -0.201 
6 -0.187 -0.190 -0.192 -0.193 -0.193 -0.194 -0.195 -0.195 
8 -0.189 -0.194 -0.194 -0.194 -0.193 -0.194 -0.195 -0.195 

10 -0.190 -0.194 -0.194 -0.194 -0.193 -0.194 -0.195 -0.195 

H l c  = 1.5 
4 -0.0660 -0.0660 -0.0660 -0.0591 -0.0591 -0.0591 
6 -0.0662 -0.0666 -0.0667 -0.0588 -0.0589 -0.0589 
8 -0.0663 -0.0667 -0.0667 -0.0588 -0.0589 -0.0589 

TABLE 2. Convergence tests of (a) F$/F13J.m, (b) !RJq,m and (c)  T!! for an oblate spheroid inclined 
at a = 15' relative to a planar wall. N = number of rings (constant values of Z), M = number of 
collocation points on each ring (constant values of 0 )  

independent. From reciprocity theorems, Brenner (1964), three pairs of the resistance 
coefficients are related as follows: 

FP = Fi, (3.3) 

Fi = $T$, (3.4) 

Fj = 4P'. (3.5) 

These relations are used as a further check of the consistency of the numerical results. 
Table 1 shows convergence tests of the force and torque coefficients for an oblate 

spheroid having aspect ratio a/b = 0.5 with its axis of symmetry oriented 
perpendicular to the wall (i.e. a = 90'). For this particular case only one-dimensional 
collocation is required. Note that the convergence for H / b  = 0.55, which is equivalent 
t o  H / a  = 1.1, is somewhat slower than for a sphere with H / a  = 1.1 (see Appendix B). 
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FIGURE 4. The drag force on an oblate or prolate spheroid having aspect ratio ( a )  E = 0.5, 
( b )  E = 0.1, translating parallel to a wall. -, oblate; ---, prolate. 
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FIGURE 5. The drag force on an oblate or prolate spheroid having aspect ratio (a) E = 0.5, 
( b )  E = 0.1, translating perpendicular to a wall. ---, oblate; ---, prolate. 

When the particle is oriented at  an arbitrary angle relative to the wall two- 
dimensional collocation is required. The rate of convergence is found to be similar to 
the case of a sphere (see Appendix B) if we replace H/a  by H / c .  Table 2 shows the 
convergence of the coefficients F$, and T"$ for an oblate spheroid having aspect 
ratios B = 0.1 and 0.5 inclined at a = 15' relative to the wall. The remaining 
resistance coefficients exhibited similar convergence characteristics and are not 
shown. Inspection of this table shows that convergence to three or four significant 
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FIGURE 6. The force component perpendicular to the wall on an oblate or prolate spheroid having 
aspect ratio (a) E = 0.5, ( b )  E = 0.1, due to translation parallel to the wall. -, oblate; ---, 
prolate. 

figures can be achieved for spacings H / c  as close as 1.1 using a maximum of 10 rings 
with 10 points on each ring. Larger spacings ( H / c  > 1.5) require only 4-6 rings and 
points to achieve the same accuracy. 

Figures 4-12 show the converged values of the dimensionless hydrodynamic force 
and torque coefficients for an oblate and prolate spheroid as a function of the 
orientation angle a for constant values of separation distance H l c  and aspect ratio 
6. The coefficients are presenbed as the ratios of their values in the presence of the wall 
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FIGURE 7. The force component parallel to the wall on an oblate or prolate spheroid having aspect 
ratio (a) E = 0.5, ( b )  E = 0.1, which is rigidly held in a shear flow. -, oblate; ---, prolate. 
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FIQURE 8. The force component perpendicular to  the wall on an oblate or prolate spheroid having 
aspect ratio (a )  E = 0.5, ( b )  B = 0.1, which is rigidly held in a shear flow. -, oblate; ---, prolate. 

to the corresponding values in an unbounded fluid domain, except for the torque 
coefficients Pi and Pt for translation parallel and perpendicular to the wall which are 
identically zero in the absence of the wall. The hydrodynamic force coefficients of a 
spheroid moving parallel or perpendicular to its axis of symmetry in an unbounded 
fluid domain were obtained by Oberbeck and are presented by Happel & Brenner 
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(1973, p. 223). The torque coefficients of a spheroid which is rotating in an otherwise 
quiescent unbounded fluid or rigidly held in an unbounded shear flow U ,  = Sx, were 
obtained by Jeffery (1922). A summary of these formulas is presented in Appendix 
C for reference. 

Figures 4 and 5 show F?/Fti, , and Fz/Fk  ,, the ratios of the drag force for the 
motion parallel and perpendicular to the wall, respectively, to the corresponding 
force when H + m. The curves of F?/F?, , are similar in shape for both a = 0.5 and 
0.1 with the values for a = 0.1 somewhat smaller than for a = 0.5. However the 
behaviour of Fk/F$, , is radically different for a = 0.1 and 0.5, especially a t  close 
spacings. For an oblate spheroid at H / b  = 1.1 the ratio F z / F k ,  decreases with 
increasing a for 8 = 0.5 while it increases for a = 0.1. 

the ratio of the force component perpendicular to the wall 
due to the motion parallel to the wall to the same force in the absence of the wall. 
Although the values of F$ are zero for the orientation angle a equal to 0' and 90°, 

Figure 0 shows F$/Fk 
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FIGURE 10. Torque on an oblate or prolate spheroid having aspect ratio (a) E = 0.5, ( b )  8 = 0.1, 
which is rigidly held in a shear flow in the vicinity of a planar wall. -, oblate; ---, prolate. 

the ratio F$/F$ Q) has a finite limiting value for each particle-to-wall spacing a t  the 
two extreme points. The ratio F>/Fk is a weak function of a up to H / c  = 1.5 but 
becomes strongly dependent on a when the spheroid is closer to the wall. 

Figures 7 and 8 show the variation of ratios F;/Fi* a, and F;/F;* oo respectively. It 
is interesting to note that F:, a = -Fk Comparing with figures 
4 and 5 ,  the absolute value of Fi is always less than FP, and the absolute value of F; 
is always less than F$, and their difference increases as the particle is brought closer 
to the wall. 

and Fi,  oo = - Fk 
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FIQURE 11. Torque on an oblate or prolate spheroid having aspect ratio (a) E = 0.5, (b)  E = 0.1, 
due to translation parallel to the wall. -, oblate; ---, prolate. 



48 R. Hsu and P. Ganatos 

0 30 60 90 
a (degrees) 

0.3 I I I 

0.2 

- T> 

0.1 

H ~ c  = 1.1 
J 

0 30 60 90 
a (degrees) 

FIQURE 12. Torque on an oblate or prolate spheroid having aspect ratio (a )  E = 0.5. ( b )  E = 0.1, 
due to translation perpendicular to the wall. -, oblate; ---, prolate. 

Figure 9 shows !l?Jq, the ratio of the torque experienced by a rotating spheroid 
to the value in an unbounded fluid domain. The ratio is almost unity for H l c  greater 
than 5.  When the separation distance is decreased, the orientation angle a at which 
!!"!JC, becomes maximum gradually shifts from a = 0" toward 90" for an oblate 
spheroid and vice versa for a prolate spheroid. 

All the ratios shown above are greater than unity for any orientation angle a, so 
these force and torque coefficients are always larger than the corresponding values 
in an unbounded fluid domain. However, for the ratio Tl/Tg. oo this is not the case, 



FIGURE 13. Resistance coefficients (a) F?, (6) F$ and (e)  F? for a spheroid inclined at an orientation 
a = 45" in the vicinity of a planar wall as a function of aspect ratio E .  -, oblate ; ---, prolate. 
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H l b  
(a) 1.1 

1.5 
2.0 
2.5 
5.0 

10.0 

(b)  1.1 
1.5 
2.0 
2.5 
5.0 

10.0 

(c) 1.1 
1.5 
2.0 
2.5 
5.0 

10.0 

Boundary integral method Method of reflections 
(present work) Wakiya (1959) 

a = 0" 

2.08 
1.530 
1.343 
1.256 
1.113 
1.054 

7.18 
3.21 
2.209 
1.886 
1.349 
1.156 

-0.228 
-0.0656 
-0.0302 
-0.0177 
-0.00385 
- 0.0009 1 

a = 45" 

1.75 
1.455 
1.309 
1.234 
1.106 
1.051 

5.23 
3.096 
2.265 
1 .a99 
1.358 
1.160 

- 0.05 14 
-0.0155 
-0.00603 
-0.00307 
-0.00048 
-0.000096 

a=90° 

1.574 
1.380 
1.269 
1.208 
1.097 
1.047 

4.59 
2.86 
2.265 
1.91 1 
1.367 
1.164 

-0.0591 
0.0325 
0.0189 
0.0124 
0.0032 
0.00078 

a = 0" 

1.77 
1.488 
1.333 
1.252 
1.113 
1.054 

1.54 
2.282 
2.023 
1.790 
1.342 
1.156 

-0.126 
-0.0572 
-0.0288 
-0.0173 
-0.00385 
-0.00091 

a = 45" 

1.57 
1.415 
1.298 
1.230 
1.106 
1.051 

1.31 
2.222 
2.031 
1.807 
1.351 
1.160 

-0.00870 
-0.00796 
-0.00409 
-0.00233 
-0.00044 
-0.000094 

a = 90" 

1.345 
1.346 
1.259 
1.204 
1.097 
1.047 

1.13 
2.172 
2.043 
1.826 
1.361 
1.164 

- 0.0897 
-0.0453 

0.0238 
0.0146 
0.0033 
0.00079 

TABLE 3. Comparison of values of ( a )  F$/F$,Oo, (6)  F$/F$,,, and (c) T"! obtained by the present 
boundary integral method to values obtained by the method of reflections for an oblate spheroid 
with alb  = 0.5 

as shown in figure 10. For an oblate spheroid the ratio is less than unity for small a 
and is greater than unity for large a. When a approaches 90" the ratio of TB,/Ti, a, 
increases very rapidly. When the aspect ratio is very small (8 = 0.1) and a is very 
close to goo, TS,/Ti9 becomes very large although the actual value of Ti at a = 90" 
is much less than the value at a = 0". For a prolate spheroid the ratio Ti/Tt,m has 
its maximum value at a = 0" for a given spacing. 

The dimensionless torque coefficients for parallel and perpendicular motion are 
shown in figures 11 and 12, respectively. As expected both coefficients vanish when 
H l c  --f 00. It is interesting to note that the torque due to the parallel motion changes 
sign as a function of the orientation angle. Therefore for each particle-to-wall spacing 
and aspect ratio, there is a critical orientation angle for which a spheroid can 
translate parallel to the wall without experiencing any torque. 

Comparing the corresponding curves for a prolate and oblate spheroid having the 
same aspect ratio we find that the qualitative variation of all the coefficients with a 
for a prolate spheroid is similar to that for an oblate spheroid having the same aspect 
ratio a t  an orientation of 90" - 01. This is because while the angle between the major 
axis and the wall is a for a prolate spheroid, it is 90" -a for an oblate spheroid. 

In order to more clearly see the effect of body shape, figure 13 shows the force 
coefficients F?, F$ and F!J as a function of the aspect ratio 8 at  a = 45" and several 
constant values of Hlc.  All three ratios have their maximum values for a sphere 
(6 = 1) .  The coefficient F!J is zero for a sphere. When E approaches unity the ratio 
F2/F2,m increases with E very rapidly but has limiting values. For a spheroid with 
8 close to unity the absolute value of F$ is very small and converges much slower 
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FIQURE 14. Geometry for the motion of a torus near a planar wall. 

than other coefficients. Limited by computer time, the values of F$ have not been 
calculated accurately for E very close to unity at  H / c  = 1.1 and, therefore, are not 
shown in figure 13(c). 

The force and torque coefficients of a spheroid moving parallel to a wall have been 
obtained by the method of reflections in Wakiya (1959). The results achieved by the 
method of reflections are compared to the solutions of the present boundary-integral 
method in table 3. At large spacings the results of Wakiya are in good agreement 
with the values achieved by the boundary-integral method. A t  close spacings the 
discrepancy increases, but agreement is still good for the coefficient FP up to H / b  = 
1.5. For the coefficients F? and P21 the results obtained by the method of reflections 
have substantial error a t  close spacings. For example, at  H / b  = 1.5 and 1.1 the value 
of Fk calculated by the method of reflections is 25 % and four times less respectively 
than the strong-interaction solutions obtained by the present theory. Even at 
H l b  = 5 the error of the values of P! computed by the method of reflections is close to 
10%. 

4. Solutions for the motion of a torus near a planar wall 
The creeping motion of a torus in a viscous fluid near an infinite planar wall is 

illustrated in figure 14. The particle has a translational velocity U, and is rotating 
with an angular velocity o. U, represents the undisturbed simple shear flow. 

In $2 ,a  theory was developed for treating any arbitrary body of revolution whose 
surface could be expressed by the single-valued function R,(Z ), where the Z-axis 
lies along the particle axis of symmetry. However, the torus currently under 
consideration and the biconcave-shaped disc to be treated in the next section are 
examples of a body of revolution whose shape R, is a multivalued function of 2. 
Therefore, a modification of the theory presented in $2 is needed. Accordingly, we 
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choose a suitable parameter 7 so that both R,  and Z are related to it by a single- 
valued function. For the case of a torus: 

O < < < < x  
R, = b +a sin 7,  
Z=acos r ,  

( 4 . 1 ~ )  

(4.1 b) 

The outside portion of the torus is represented by varying 7 from 0" to 180" while the 
inside portion by varying 7 from 180" to 360". The stokeslet density functions for 
motion having planar symmetry are represented by the double Fourier series: 

m W 

= I: P I ,  m, 0 + c ( ~ 1 ,  m,  n cosn7 +B,, m, n sin 
m-0 n-1 

I J  W m 

f3 = C (.., m, 0 + C (A3, ,, cos ny + B3, m, sin ny) cos m8. 
m-0 n-1 

Substituting (4.la,  6) and (4.2) into the integral equation (2.151, all integrals can 
be performed with respect to the variables 8 and 7. The integration along the 8- 
direction is performed analytically as shown in Appendix A. The integration in the 
7-direction is performed numerically. After the coefficients Ak, m, and Bk, m, ,, are 
obtained, the drag and torque on the particle are found to be 

T,  = x2(-(a2+2b2) (A,,,,,cosa+A,,,,,sina) 

+2cGb [(A~,0,~-B~,i,i)cosa-~(Ai,o,i+B3,1,1)sina1 

+" [ ( @ l , l , 2 + B 3 , 0 , Z )  CoSa+(@3,1 ,Z+B3,0 ,2)  sinall' (4.4) 

The hydrodynamic force and torque coefficients for a torus in the vicinity of a 
planar wall are defined as follows: 

Fp F i  HFS Ul (5) =6xPC( :! F% Fi HFf) (:) , 14.5) 
&!?t,l $c!i"!! $q icc2T: 

where c = a + b is the outer radius of the torus. 
The force and torque coefficients for the translational and rotational motion of a 

torus in an otherwise unbounded quiescent fluid are listed in Goren & O'Neill(l980). 
For reference the force and torque coefficients for a torus with b/a = 2 and 10 are 
listed in table 4. These values are also calculated using the present boundary-integral 
method and are found to be in full agreement with the exact solution. To the best of 
the authors' knowledge the torque coefficient for a torus in an unbounded shear flow 
has not previously been computed. The values of this coefficient presented in table 4 
have been calculated using the present theory. 

When the axis of symmetry is perpendicular to the wall the coefficient matrix (2.15) 
is independent of 8 and only one-dimensional collocation is needed as illustrated 
in Apprendix B for a sphere. The collocation points, each of which represents a ring 
on the particle surface on which the no-slip boundary conditions are exactly satisfied, 
are chosen by specifying equally spaced values of 7 in the range 0" and 360". Tables 
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b/a = 2 b/a = 10 

Force coefficient for motion parallel to symmetry axis -0.9072 -0.7843 
Force coefficient for motion perpendicular to symmetry axis -0.7732 -0.6174 
Torque coefficient for a torus rigidly held in a shear flow parallel to -0.9477 -0.8440 

Torque coefficient for a torus rigidly held in a shear flow perpendicular -0.1703 
the symmetry axis 

to the symmetry axis 

symmetry axis 

-0.01678 

Torque coefficient for rotation about an axis perpendicular to the -0.5590 -0.4304 

TABLE 4. Force and torque coefficients for a torus in an infinite fluid 

N\HIc 0.5 

4 - 25.15 
6 -19.60 
8 -18.30 

10 -18.42 
12 -18.52 
14 -18.51 
16 -18.51 

(a )  
0.8 

-5.921 
-5.500 
-5.499 
-5.500 
-5.500 
-5.500 
- 

b/a = 2 
1.1 

-3.677 
-3.111 
-3.121 
-3.122 
-3.122 

1.5 

-2.150 
-2.136 
-2.140 
-2.141 
-2.141 

co 
- 0.9174 
-0.9072 
-0.9072 
-0.9072 
- 

(b )  b/a = 10 
N\H/c 0.2 0.5 0.8 1.1 1.5 co 

4 -9.122 -3.120 -2.167 -1.741 -1.348 -0.7823 
6 -7.547 -2.858 -2.142 -1.764 -1.471 -0.7843 
8 -7.232 -2.859 -2.140 -1.764 -1.471 -0.7843 

10 -7.233 -2.859 -2.140 - - - 

12 -7.233 

TABLE 5. Convergence of the coefficient F? for a torus with its symmetry axis 
perpendicular to the wall 

- - - - - 

(a) b/a = 2 
N\H/c 0.5 0.8 1.1 1.5 co 

4 
6 
8 

10 
12 
14 
16 

-3.124 -1.542 -1.312 -1.118 -0.7706 
-1.881 -1.366 -1.170 -1.048 -0.7732 
-2.063 - 1.372 -1.171 -1.048 -0.7732 
-2.077 - 1.372 - 1.171 - 1.048 -0.7732 
-2.079 -1.372 -1.171 - - 
-2.079 
-2.079 

- - - - 
- - - __ 

(b) b/a = 10 
0.2 0.5 0.8 1.1 1.5 co 

-2.534 - 1.006 -0.9103 -0.8311 -0.7737 -0.6166 
- 1.910 -1.096 -0.9132 -0.8324 -0.7749 -0.6174 
-1.927 - 1.096 -0.9132 -0.8324 -0.7749 -0.6174 
- 1.928 - 1.096 
- 1.928 

- - - - 
- - - - - 

TABLE 6. Convergence of the coefficient F? for a torus with its symmetry axis 
perpendicular to the wall 
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(a)  b/a = 2 
N\H/c 0.5 0.8 1.1 1.5 a 

4 -2.943 -0.9314 -0.7724 -0.6734 -0.5810 
6 -1.774 -0.8890 -0.6997 -0.6228 -0.5584 
8 -2.262 -0.9175 -0.7071 -0.6230 -0.5590 

10 -2.319 -0.9176 -0.7071 -0.6230 -0.5590 
12 -2.323 -0.9176 -0.7071 -0.6230 - 

14 -2.324 -0.9176 - - - 

16 -2.324 - - - - 

(b)  b/a = 10 
N\H/c 0.2 0.5 0.8 1.1 1.5 00 

4 -2.847 -0.8657 -0.6231 -0.5320 -0.4915 -0.4408 
6 -2.226 -0.8223 -0,6044 -0.5219 -0.4748 -0.4304 
8 -2,227 -0.8224 -0.6044 -0.5219 -0.4748 -0.4304 

10 -2.229 -0.8224 -0.6044 - - 
12 -2.229 - - - 

TABLE 7. Convergence of the coefficient T', for a torus with its symmetry axis 
perpendicular to the wall 

- 

- - 

1.2 - 
-------- 

1 .o I 

'0 30 60 90 
a (degrees) 

FIauRE 15. The drag force on a torus moving parallel to a wall. -, b/a = 2, b/a = 10. 

5-7 show convergence tests for the coefficients F?, FP and for a torus having 
bla = 2 and 10. The values of the coefficients in an infinite fluid rapidly converge to 
the exact solutions using only eight collocation points. As expected more collocation 
points are needed to get the same accuracy when the particle is close to the wall. 
Convergence is somewhat slower for b/a = 2 than for b/a = 10. In  the worst case 
tested @/a  = 2, H / c  = 0.5) only 14 collocation points are required to achieve four- 
digit accuracy for all the force and torque coefficients. 
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FIGURE 16. The drag force on a torus moving perpendicular to a wall. 
-, b/a  = 2, ---, bla = 10. 
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FIGURE 17. The force component perpendicular to the wall on a torus translating parallel to the 
wall. -, b/a  = 2, ---, bla = 10. 

Theoretical values of the ratio F?/F$, co have been obtained by Kucaba-Pietal 
(1986) for a torus translating parallel to the wall with its axis of symmetry oriented 
perpendicular to the wall for H / c  1.13 using the multipole technique. Figure 4 of 
Kucaba-Pietal (1986) which presents these results was plotted incorrectly (A. 
Kucaba-Pietal 1987, private communication). In order for the results in this figure 



56 

- 

------- 
I .o 1 I 

R. Hsu and P .  Ganatos 

1.6 

1.4 

1.2 

0 30 60 90 
a (degrees) 

FIGURE 18. The force component parallel to the wall on a torus which is rigidly held in a sheal; 
flow in the vicinity of a planar wall. -, b/u = 2, ---, b ja  = 10. 

to make sense, the parameter T defined as the outer diameter of the torus is actually 
the outer radius of the torus. With this correction, the converged solutions shown in 
table 6 are in good agreement with the multipole calculations of Kucaba-Pietal 
(1986) for the spacings H / c  2 1.13 where solutions are available. 

When the torus is arbitrarily oriented relative to  the wall, the general two- 
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20. Torque on a rotating torus near a planar wall. -, bla = 2, ---, bla = 10. 
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FIGURE 21. Torque on a torus which is rigidly held in a shear flow in the 
wall. (a) bla = 2, ( b )  bla = 10. 

vicinity of a planar 
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FIQURE 22. Torque on a torus translating parallel to a wall. -, b/a  = 2, ---, b/a = 10. 
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FIGURE 23. Torque on a torus translating perpendicular to a wall. -, b/a  = 2, ---, b /a  = 10. 

dimensional collocation is needed. The collocation points are placed at equally 
spaced values of 7 between 0' and 360'. A constant value of 7 represents a ring on 
the particle surface. At  each ring the points are equally spaced between 0 = 0" and 
180". Convergence tests of the force and torque coefficients for a torus having a l b  = 
0.1 and 0.5 (see figure 14) with respect to the wall were performed and the rate of 
convergence was found to be similar to that of an oblate spheroid whose results are 
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FIGURE 24. Resistance coefficients (a)  F? and ( b )  F? for a torus with its symmetry axis 
perpendicular to a wall as a function of bla.  

oriented 

shown in table 2. The actual numerical values of these convergence tests for an 
inclined torus are contained in Hsu (1985). 

Figures 15-23 show converged values of the nine independent coefficients for a 
torus with bla = 2 and 10 as a function of orientation angle a and the separation 
distance H / c .  

Comparing the curves for a torus of b l a  = 2 with those for an oblate spheroid 
having aspect ratio B = 0.5 presented in $3, most of the curves having the same value 

FLM PO7 3 
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of H / c  exhibit similar behaviour qualitatively and quantitatively especially for small 
values of the orientation angle a. The only exception is the ratio F';/F?,,, which 
increases with increasing a for a torus while it decreases with increasing a for an 
oblate spheroid. Although the ratio of F>/Fk is substantially different for the torus 
and the oblate spheroid a t  H / c  = 1.1, the ratio becomes relatively insensitive to 
orientation angle for H / c  > 2 ,  and for a given value of H / c  the two ratios are 
approximately equal. I n  an unbounded fluid the difference between the cor- 
responding values of the actual resistance coefficients for both shapes is less than 1 %. 
Therefore an oblate spheroid having aspect ratio B = 0.5 can be used as a good 
approximation of the motion of a torus with b/a  = 2 when the torus is not very close 
to the wall. It is worth noting that an oblate spheroid with E = 0.5 and a torus with 
b/a  = 2 having the same outer radius have approximately same surface area. On the 
other hand the motion of a torus having b/a = 10 would not be similar to the motion 
of an oblate spheroid even in an unbounded fluid. 

as functions of b/a  
for a torus with its axis of symmetry oriented perpendicular to the wall. Both ratios 
decrease with increasing aspect ratio. As expected, the ratio F 3 / F k m  is a much 
stronger function of the aspect ratio than is the ratio F?/F?, m. 

Finally figure 24 shows the variation of F?/F? oo and F $ / F k  

5. Solutions for the motion of a biconcave-shaped body near a planar wall 
The typical shape of an undeformed red blood cell is shown in figure 25. The shape 

can be expressed as 
(5.1) 

where B is the width, R, is the radius of the blood cell, R,, C,, C, and C, are constants, 
and R, represents the largest radius. Representative values of these constants are 
listed in Fung (1981). In  this section we solve for the motion of a blood cell adjacent 
to a planar wall using the values 

B = R,( 1 - R;); (C, + C, R i  + C, R;), 

R, = 3 . 9 1 , ~ ~  C, = 0 . 8 1 , ~ ~  C, = 7.83 ,~ ,  C, = 4.39,~. (5.2) 

As in the case of a torus the shape R = R ( Z )  is not a single-valued function. To 

(5.3 a)  

Z =  Po( 1 -R;)i (C, + C, Ri + C, R i )  sgn 7,  (5.3b) 

where sgn(z) = Izl/s. Then both R, and 2 are single-valued functions of 7. The 
stokeslet density functions are represented by the double Fourier-Legendre series : 

describe the biconcave shape we introduce a new parameter 7 and let 

R, = R, cos 7, 

w o o  

fi = C C Al,,,,Pn(cos~)cosm6, 

fi = C C A,, m, P,(cosy) sin me, 

f3 = C C A3,,,,Pn(cos7) cosm6, 

m-0 n-0 

m w  

m-1 n=o 

m w  

m-0 n-0 

(5.4) 

where P,(x) is the Legendre function of order n. Substituting (5.3a, b) and (5.4) into 
integral equation (2.15) all integrals in (2.15) can be performed with respect to the 
variables 8 and 7, as was done for the torus. The collocation points are arranged such 
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k 
FIGURE 25. Geometry of a biconcave shaped disc near a planar wall. 

Force coefficient for motion parallel to symmetry -0.9062 
axis 

Force coefficient for motion perpendicular to -0.7724 
symmetry axis 

Torque coefficient for the body rigidly held in a 
shear flow parallel to the symmetry axis 

Torque coefficient for the body rigidly held in a 
shear flow perpendicular to the symmetry axis 

perpendicular to the symmetry axis 

4 . 9 4 6 0  

-0.1676 

Torque coefficient for rotation about an axis -0.5568 

TABLE 8. Force and torque coefficients for the biconcave-shaped disc in an infinite fluid. 

that the rings, which are represented by constant values of 7, are nearly equally 
spaced along the arclength of the body shown in figure 25 and somewhat more 
concentrated in the vicinity of maximum radius. At each ring the collocation points 
are equally spaced between 0 = 0" and 180'. The convergence behaviour of the force 
and torque coefficients is similar to the case of a torus having bla = 2. 

The hydrodynamic force and torque coefficients of the biconcave-shaped disc are 
defined as follows: 

(5.5) 
Fp 

F3 = 6 ~ p R , ,  F2 F$ (3 ($:Q $,,Q 

The values of the force and torque coefficients for the biconcave-shaped disc 
described by (5.1) and (5.2) in an infinite fluid, obtained using the present theory, are 
listed in table 8. All the coefficients are remarkably close to the corresponding values 
for a torus with b/a = 2. When a planar wall is present the numerical solutions show 
that the force and torque coefficients are still quite close for the two bodies having 
the same H l c  and a. The difference between them is less than 1 % for all nine force 

3-2 



62 R.  Hsu and P.  Ganatos 

and torque coefficients for separation distances as close as H l c  = 1.1. Therefore 
figures 15-23 can also be used to predict the force and torque of a biconcave-shaped 
body described by (5.1) and (5.2) to a high degree of accuracy. It is worth noting that 
the biconcave-shaped body and a torus with bla = 2 have the same surface area if 
their outer radii are the same. The coincidence of the force and torque shows that the 
hole in a torus of bla = 2 has little influence on the flow field. As mentioned in $4 an 
oblate spheroid having aspect ratio 6 = 0.5 can also serve as a good approximation 
for the motion of a torus of b/a = 2 when it is not very close to the wall. 

6. Concluding remarks 
The successful application of the boundary-integral method to the motion of a 

spheroid, a torus and a biconcave-shaped disc near a planar wall has shown that the 
method is effective and suitable for treating the motion of a body of arbitrary shape 
near boundaries. Examples of the types of problems that can be treated include the 
motion of a non-spherical particle between two walls or in a circular cylinder. The 
method is also suitable for treating deformable bodies such as a fluid droplet 
(Rallison & Acrivos 1978), or a deformable interface between two immiscible fluids 
(Leal & Lee 1982a, b) .  

A limitation of the technique is the long computation time required to evaluate the 
double integrals in the integral equations. Therefore great effort has been taken in 
this study to evaluate all the integrals in the azimuthal direction analytically. In this 
way a tremendous amount of computational time has been saved and the accuracy 
of the solution is greatly increased. 

In closing, the authors wish to mention that the solutions for the force and torque 
coefficients obtained in the present study have been applied to obtain the trajectories 
of an oblate spheroidal particle settling under gravity adjacent to an inclined planar 
surface and of a neutrally buoyant spheroid in shear flow adjacent to a planar wall. 
The motion of a non-spherical particle is much more complicated than the motion of 
a sphere because of the dependence of the resistance force on the orientation and the 
fact that some coupling forces are not identically zero as in the case of a spherical 
particle. This work is to be submitted for publication shortly. 
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Appendix A 
A key step in keeping computation time a t  a minimum while maintaining high 

accuracy is to evaluate the integrals in (2.15) analytically in the &direction. After 
lengthy algebraic operations all of the required integrals in the &direction can be 
reduced to the following general form: 
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where m is 0 or an integer and p = 1 ,  3,  5 and 7. This integral can also be written as 

where 

To evaluate the integral Q(K, m, p ,  8 )  we discuss two cases. 
(a )  0.8 < K < 1 : This integral can be represented by the series 

where 
i = m = O  

( - i ) i 2 2 i ( m + i - i ) !  
otherwise, 

(2 i ) !  ( m - i ) !  

The function Q(K,p,  i, 0)  can be expressed in terms of elliptic functions of the first 
and second kind as follows : 

1 K 2  
G(K, p ,  i, 0)  = - G(K, p - 2 ,  i - 1,0) -- G(K, p ,  i- 1, e),  

K2 K2 

where E and F are incomplete elliptic functions of the first and second kind, 
respectively, K 2  = 1 -K2 and A = (1 -K2 sin2 8);. 

Unfortunately the results given by (A 5 )  produce large round-off error for small K 
and large m. Therefore (A 5 )  can be used only for K close to unity. 

(b )  0 < K < 0.8: When K is not close to unity we use the infinite series 

(1 - K2 sin2 = 1 + % K2 sin2 0 + $[b ($ + 1)J K4 sin4 0 

($) (%+ 1) ... (&,+ J- 1) 
J !  

K2Jsin2JO+.... (A 12) +...+ 
Then using the known result 

sin2Jxcos2mxdx = {?( 22m-1 J-m 2 J ) ,  J a m  (A 13) 
J < m, 
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The infinite series (A 14)  converges very quickly for K not close to unity. 

show that K = 0.8 is a reasonable value for matching the two solutions. 
The applicable regions for K of equations (A 5) and (A 14) overlap. Numerical test.s 

When Z = Z* and 6 = 6* the following integrals in (2.15) become singular: 

and 

To evaluate these integrals we divide the region of integration into four subregions 
as follows: 

J:: 1; q5 do dZ = (1: + 1*+6 1; + l::I r-‘’ + l:r: re) q5 d6’ dZ (A 17) 

where 0 < E 4 a ,  e1 = E/Ro. The first three integrals on the right-hand side of (A 17)  
are regular, while the fourth is singular. The first two integrals in the 6-direction can 
be evaluated using (A 5) or (A 14). The third one can be represented by 

where the function G(K,  p ,  i ,  g(x -el))  can be expressed in terms of the incomplete 
elliptic functions by (A 8)-(A 11) .  The last one can be evaluated analytically by 
treating the small region around the singularity as a flat plane as was done by 
Youngren & Acrivos (1975). 

Appendix B 
To test the accuracy and convergence characteristics of the solution technique, we 

consider the following elementary problems involving the motion of a spherical body 
adjacent to a planar wall where exact solutions are available for comparison : (1)  pure 
translation of a sphere perpendicular to the wall; (2) pure translation of a sphere 
parallel to the wall ; (3) pure rotation of a sphere about an axis parallel to the wall ; 
(4) shear flow past a rigidly held sphere near the wall. 

We first look a t  pure axisymmetric translation of the sphere perpendicular to the 
wall. With a = 90°, (see figure 3) the stress forces in the R- and Z-directions must be 
independent of the axirnuthal angle 6 and the stress forces in the azimuthal direction 
are identically zero. So, we set: 

m 

n=o 

W 

n-0 

m 

f,= n=O c cnpn(:). I 
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(a) ( b )  

N\H/a 1.1276 1.5431 2.3524 3.7622 1.1276 1.5431 2.3524 3.7622 

5 -32.13 -3.039 -1.839 -1.222 -8.38 -3.035 -1.837 -1.222 
7 -12.09 -3.036 -1.838 -1.222 -9.05 -3.036 -1.838 -1.222 
9 -9.45 -3.036 -1.838 -9.21 -3.036 -1.838 - 

11  -9.25 - -9.24 - - - 

-9.25 13 -9.25 - - 

Exact -9.25 -3.036 -1.838 -1.222 -9.25 -3.036 -1.838 -1.222 

TABLE 9. Convergence of dimensionless resistance coefficient FP for a sphere moving perpendicular 
to a wall at various sphere-to-wall spacings. (a) Boundary collocation method, ( b )  weighted 
residual method 

- 

- - 

- - - - 

Substituting (B 1)  into (2.15) and applying the no-slip boundary conditions on the 
surface of the body at discrete values of 2 gives a system of linear algebraic equations 
which is independent of the &coordinate of the collocation points. Therefore only 
one-dimensional collocation is needed. 

It is found that when the gap between the sphere and the wall is greater than half 
the radius of the sphere, the choice of collocation points is not critical if they are 
evenly spaced. When the sphere is located closer to the wall, some points are more 
important than others to achieve fast convergence. One important point is 2 = 0 
since i t  satisfies the no-slip boundary conditions on the ring covering the largest 
surface area on the particle and defines the maximum radius of the particle. The two 
end points 2 =+a, the radius of the sphere, are also important. However, if 
collocation points are placed exactly at 2 = &a,  some of the coefficients of the matrix 
equation (2.15) become singular. One can either factor out the singularity or 
completely eliminate these terms by appropriate addition or subtraction of the linear 
algebraic equations as was done by Kim & Mifflin (1985) who encountered a similar 
situation in treating the problem of two spheres in an unbounded flow by the 
boundary collocation, truncated series solution technique. Alternatively, one can 
overcome the problem much more easily by simply replacing the two end points with 
two nearby points. The remaining collocation points are then evenly spaced along the 
circular arc. 

Table 9(a) shows the results of convergence tests of the dimensionless force 
coefficient F? as a function of particle-to-wall spacing H / a  for perpendicular motion 
using the boundary collocation method. F$ is related to the hydrodynamic force by 

(B 2) F ,  = 6npaU, F?, 

where U, is the velocity of the particle perpendicular to the wall. The numerical 
results are compared to the exact solution given by Brenner (1961). Convergence to 
a t  least three significant digits is obtained using eleven collocation points for gap 
widths as small as one-tenth of the sphere radius. When the gap width is larger than 
half the sphere radius only seven collocation points are needed to give four 
significant digit accuracy. 

Table 9(b) shows the results of convergence tests of the dimensionless force 
coefficients F? for perpendicular motion using the weighted residual method. The 
convergence characteristics are surprisingly similar to those of the boundary 
collocation method shown in table 9 (a).  Because of the similarity of the convergence 
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(a )  (b)  

N\H/a 1.1276 1.5431 2.3524 3.7622 1.1276 1.5431 2.3524 3.7622 

4 -2.016 -1.462 -1.283 -1.168 -0.1126 -0.0323 -0.00242 -0.000415 
6 -2.116 -1.567 -1.308 -1.174 -0.0985 -0.0298 -0.00253 -0.000418 
8 -2.144 - 1.567 - 1.308 - 1.174 -0.0760 -0.0145 -0.00263 -0.000419 

10 -2.152 - - - -0.0723 -0.0146 -0.00264 -0.000422 
12 -2.151 - - - -0.0737 -0.0147 -0.00264 -0.000422 

Exact -2.151 -1.567 -1.308 -1.174 -0.0737 -0.0147 -0.00264 -0.000422 

TABLE 10. Convergence of dimenvionless resistance coefficients for a sphere moving parallel to a 
wall at  various sphere-to-wall spacings. (a)  F?, (b)  7"~ 

N\H/a 1.1276 
4 -0.173 
6 -0.149 
8 -0.106 

10 -0.0983 
12 -0.0983 

Exact -0.0983 

(a )  

1.5431 2.3524 3.7622 
-0.0226 -0.00375 -0.00549 
-0.0202 -0.00351 -0.00553 
-0.0188 -0.00351 -0.00558 
-0.0195 -0.00352 -0.00562 
-0.0195 -0.00352 -0.00562 
-0.0195 -0.00352 -0.00562 

(b)  

1.1276 1.5431 2.3524 
-1.334 -1.097 -1.023 
-1.374 -1.100 -1.025 
- 1.382 - 1.100 - 1.025 
-1.388 -1.100 -1.025 
- 1.388 
-1.388 -1.100 -1.025 

__ - 

3.7622 
- 1.006 
- 1.006 
- 1.006 
- 
- 

- 1.006 

TABLE 11. Convergence of dimensionless resistance coefficients for a sphere rotating along a 
wall at  various sphere-to-wall spacings. (a )  F;, ( b )  I", 

characteristics of both methods and the fact that  the computation time using the 
weighted residual method is somewhat greater than that of the boundary collocation 
method, we shall only use the boundary collocation method in the computations 
which follow. 

We now consider the non-axisymmetric motions, cases (2)-(4). For these motions 
we set 

m 

n=o \"/ 

m 

fi = X Bnsin2i9Pn 

f,= x CnCOS8Pn 

n-0 

m 

n-0 

Again the system of linear algebraic equations is independent of the &coordinate of 
the collocation points, and only one-dimensional collocation is needed, even though 
the fluid motion is now three-dimensional. Moreover, for these cases, using the point 
2 = 0 produces a singular matrix even though for the axisymmetric case it did not. 
The problem is easily overcome by replacing the point 2 = 0 by two closely spaced 
points 2 = f e as wa9 done by Gluckman, Pfeffer & Weinbaum (1971). The remaining 
points are equally spaced along the circular arc as was done in the axisymmetric case. 

Tables 10-12 show the results of convergence tests for the dimensionless force and 
torque coefficients as a function of particle-to-wall spacing. These coefficients are 
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- 

N W I a  
4 
6 
8 

10 
12 

Exact 

1.1276 1.5431 2.3524 3.7622 
1.610 1.437 1.277 1.167 
1.614 1.439 1.278 1.167 
1.616 1.439 1.278 - 
1.616 - 
1.616 
1.616 1.439 1.278 1.167 

- __ 
- - - 

1.1276 
- 0.9508 
-0.9526 
-0.9533 
-0.9538 
-0.9537 
-0.9537 

1.5431 2.3524 3.7622 
-0.9737 -0.9923 -0.9973 
-0.9746 -0.9911 -0.9971 
-0.9744 -0.9903 -0.9971 
-0.9742 -0.9901 - 

-0.9742 -0.9901 - 

-0.9742 -0.9901 -0.9971 
TABLE 12. Convergence of dimensionless resistance coefficients for a sphere rigidly held in a 

shear flow near a wall a t  various sphere-to-wall spacings. (a) F;,  ( b )  Ti 

related to the hydrodynamic force and torque acting on the sphere as follows. For a 
sphere translating with velocity U, parallel to the wall, the force and torque exerted 
by the fluid on the sphere are given by 

Fl = 6npaU, F?, T,  = 87c,ua2U, Pi. (B 4% b)  

For a sphere rotating with angular velocity w about the x2 axis the force and torque 
exerted on the sphere is 

while for a shear flow with strength S past a rigidly held sphere the force and torque 
is 

F, = 6npa2wFi, T, = 8n,ua3wC, (B 5% b)  

F, = 67c,uaHSFs, T,  = 4n,ua3STf. (B 6% b)  

Comparing with the exact solutions given by Goldman, Cox & Brenner (1967a, b ) ,  
convergence to at least three significant digits is obtained for all coefficients for 
sphere-to-wall gap widths as small as only one tenth of the sphere radius using a 
maximum of twelve collocation points. 

In order to check the convergence characteristics of the method for the general 
case when the particle is inclined a t  an arbitrary angle relative to the wall, the 
general double series representation of stokeslet strength (2.18) and general two- 
dimensional collocation over the body surface are required. Of course for the special 
case of a sphere, the drag and torque should be independent of the orientation angle. 
The degree to which the computed force and torque coefficients are independent of 
the orientation angle for a sphere serves as a further indication of the accuracy of the 
method. 

Numerous convergence tests for the general two-dimensional collocation have 
been performed to find the number of collocation points in both the Z- and 8-directions 
needed to achieve convergence to a desired accuracy. The two-dimensional 
collocation points used in the following runs are arranged such that the rings, which 
are represented by constant values of Z, are evenly spaced along the spherical arc. At 
each ring the collocation points are evenly spaced along the 0-direction. The number 
of collocation points used at each ring is equal to the number of terms retained in the 
Fourier series representation of the density functions (2.18) while the number of rings 
used is equal to the number of terms retained in the Legendre series. 

Tables 13 and 14 show numerical results of the dimensionless force and torque 
coefficients for a sphere with a fluid gap width of about one-half and one-tenth of the 
sphere radius respectively using the general two-dimensional collocation procedure. 



68 R. Hsu and P .  Ganatos 

a 
(degrees) F? F; F; Fk P d  r, T8, 

15 -1.566 -0.01955 1.439 -3.032 -0.01470 - 1.100 -0.9742 
30 -1.567 -0.01955 1.439 -3.032 -0.01470 - 1.100 -0.9742 
45 - 1.567 -0.01957 1.439 -3.035 -0.01462 - 1.100 -0.9742 
60 -1.567 -0.01956 1.439 -3.037 -0.01467 - 1.100 -0.9743 
75 -1.567 -0.01950 1.439 -3.036 -0.01468 - 1.100 -0.9742 

Exact - 1.567 -0.01953 1.439 -3.036 -0.01465 - 1.100 -0.9745 

TABLE 13. Numerical tests of two-dimensional collocation for a sphere. H / a  = 1.5431, a is the 
orientation angle of the sphere axis. 24 collocation points were used. 

a 
(degrees) 

15 
30 
45 
60 
75 

Exact 

(a )  

F? F; F; Fk I"$ r, 
-2.149 -0.09866 1.616 -8.91 -0.07467 - 1.386 -0.9537 
-2.150 -0.09886 1.616 -9.04 -0.07416 - 1.387 -0.9537 
-2.151 -0.09839 1.616 -9.24 -0.07408 -1.387 -0.9537 
-2.151 -0.09815 1.616 -9.25 -0.07411 - 1.387 -0.9537 
-2.151 -0.09813 1.616 -9.26 -0.07412 - 1.387 -0.9537 
-2.151 -0.09829 1.616 -9.252 -0.07372 - 1.387 -0.9537 

(b )  
15 -2.151 -0.09836 1.616 -9.23 -0.07352 - 1.388 -0.9537 
30 -2.150 -0.09838 1.616 -9.27 -0.07340 - 1.387 -0.9537 
45 -2.152 -0.09810 1.616 -9.26 -0.07387 - 1.387 -0.9537 
60 -2.151 -0.09859 1.616 -9.20 -0.07484 - 1.387 -0.9537 
75 -2.148 -0.1029 1.616 -9.31 -0.07605 - 1.385 -0.9537 

Exact -2.151 -0.09829 1.616 -9.252 -0.07372 - 1.387 -0.9537 

TABLE 14. Numerical tests of two-dimensional collocation for a sphere at  H/a = 1.1276. (a) 
Using 10 rings and 6 points at  each ring. ( b )  Using 8 rings and 8 points at each ring 

When the fluid gap width is one-half the sphere-radius the same arrangement of 
collocation points (given values of 2) and four points a t  each ring (given values of 0)  
are used for all orientation angles as shown in table 13. Comparing with the exact 
solution, the maximum error of all coefficients in any orientation is less than 0.5 YO. 
When the separation gap is only one-tenth of the sphere radius, two different 
arrangements of the collocation points are used as shown in tables 14(a) and 14(b). 
We find that although both sets of results exhibit good accuracy, the arrangement 
used in table 14(a) (ten rings and six points a t  each ring) is better than the 
arrangement used in table 14(b) (eight rings and eight points a t  each ring) when the 
orientation angle is larger than 45", and vice versa when the orientation angle is 
smaller. This behaviour is to be expected since as 01 --f 90" fewer terms in the Fourier 
series, and thus fewer collocation points on each ring, are needed. In  fact, as already 
demonstrated, in the limit of a = 90" only one term of the Fourier series and one- 
dimensional collocation in the Z-direction is required. 

It should be noted that the coefficients on the left-hand side of the integral 
equations (2.15) depend only on the geometry and the form of the series 
representation of the stokeslet densities but not on the boundary conditions satisfied 
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Motion Motion 
parallel perpendicular 
to axis to axis 

oblate 
afb 
0.1 -0.8525 -0.6133 
0.2 -0.8615 -0.6596 
0.5 -0.9053 -0.7927 
0.8 -0.9606 -0.9189 

prolate 
bfa 
0.8 - 0.8404 -0.8788 
0.5 -0.6020 -0.6895 
0.2 -0.3570 -0.4742 
0.1 -0.2647 -0.3812 

TABLE 15. Force coefficients for a spheroid in an infinite fluid 

on the particle surface or U,. Since the bulk of the computation time is used to 
evaluate the coefficient matrix for a given configuration, the force and torque 
coefficients may be determined in a single run for a given geometry a t  one instant in 
time using the two-dimensional collocation scheme for all four of the problems 
outlined at the beginning of this Appendix with a negligible increase in the 
computation time which would be required for a single problem. The computation 
time required for one configuration is approximately proportional to the square of 
the number of collocation points usea and can be estimated by the formula 
T = O . O 0 1 5 P ,  where T is the CPU time in minutes on an IBM 3081 computer and N 
is the total number of collocation points. 

Appendix C 
In this Appendix we list formulas for calculating the force and torque coefficients 

of a spheroid in an unbounded fluid. In the following a is the half-length, b is the 
radius and q5 = a /b  for both oblate and prolate spheroids. Tables 15 and 16 list some 
values of these coefficients. 

When a spheroid is translating in an unbounded fluid it does not experience any 
torque. The drag coefficient for translatory motion is defined as 

where c = b for an oblate spheroid and c = a for a prolate spheroid. 

symmetry axis can be expressed as follows: 
The drag coefficient for translatory motion with arbitrary angle a toward the 

.. 
F k  , = F$, , cos2 a + F?, , sin2 a, 

where F$ , and F"1;:, represent the drag coefficients for translatory motion parallel 
and perpendicular to the axis of symmetry respectively. The coefficients F?, and 
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Flow Flow 
parallel perpendicular 
to axis to axis T.,, m 

oblate 
alb 
0.1 -0.8525 -0.008525 -0.4305 
0.2 -0.8615 - 0.03446 -0.4480 
0.5 -0.9053 -0.2263 -0.5658 
0.8 -0.9606 -0.6148 -0.7877 

prolate 
b l a  
0.8 -0.8403 - 1.313 - 1.077 
0.5 -0.6020 - 2.408 - 1.505 
0.2 -0.3570 - 8.924 - 4.640 
0.1 -0.2647 - 26.47 - 13.37 

TABLE 16. Torque coefficients for a spheroid in an infinite fluid 

FCw are given by Happel & Brenner (1973) and listed below for reference. For an 
oblate spheroid : 

For a prolate spheroid : 

When a spheroid is rotating in an unbounded fluid it only experiences a torque. 
The torque coefficient is defined as 

c, = T,/8npb2cw. (C 7 )  

The force experienced by a spheroid in an unbound shear flow is equal to that which 
it would have if it were translating in an otherwise unbounded quiescent fluid with 
a velocity equal to the incoming fluid velocity a t  the spheroid centre. The torque 
coefficient for a spheroid rigidly held in a shear flow at an arbitrary angle a is defined 
as 

This torque Coefficient can be expressed as 

Tf,m = !RJ4zpb2cS. (C 8) 

Tf, = Tf,bw cos2 a + Tf,b: sin2 a, (C 9) 

where Tf,*m and Tf,*: represent the coefficients for shear flow whose direction is 
parallel and perpendicular to the axis of symmetry of the spheroid, respectively. The 
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torque coefficients q,,, Tf,*, and Ttv*k have been obtained by Jeffery (1922) and 
listed below for reference. For an oblate spheroid: 

while for a prolate spheroid : 

where 

A = ( $ 2 + h ) ~ ( l + h ) .  (C 16u, b,  c )  
($"+)A' 

dh "=I ( l + h ) A '  
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